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Using a Neural Network to Analyze the Impact 
of Passenger Activity on Bus Dwell Time 
and Travel Time

This paper applies neural network modeling approach to analyze the impact of passenger activities 
on bus dwell time and station-to-station travel time. Data used to develop the model was collected by 
onboard AVL/APC devices. Sensitivity analyses based on a trained neural network were performed 
to evaluate the relative significance of each passenger activity variable to variation of dwell time 
and/or station-to-station travel time. Transit providers can use these methods to identify the causes of 
schedule deviation and to develop improvement measures that are most effective to transit service. 

by Mei Chen and Xiaobo Liu

INTRODUCTION

Bus operational performance has been an 
important topic in transit studies for decades. 
Extensive research has been conducted on 
the development of various performance 
measurements. For example, Henderson et al. 
(1991) generated regularity indices for evalua-
ting transit performance. Strathman and Hopper 
(1993) analyzed operating measurements to 
assess bus on-time performance. Zolfaghari 
et al. (2002) developed a multi-attribute 
model for evaluating schedule and headway 
adherence for high and low-frequency services. 
These measurements help identify problems 
in bus operations and facilitate the design of 
effective technical and policy solutions. Some 
relevant applications include bus travel time 
prediction (e.g., Dailey et al. 2001, Shalaby 
and Farhan 2003, and Chen et al. 2004) real-
time information on bus arrival (e.g., Koffman 
1990 and Nelson 1994), and computer-aided 
dispatching (e.g., Strathman et al. 2000). 
	 Although performance measures (such 
as on-time performance and travel time) are 
critical to long-term service planning, they are 
not detailed enough to portray service variability 
at the trip level. Part of the reason is that these 
measures were traditionally developed based 
on very limited data on transit operational 
and passenger activity. The significant costs 
associated with the collection of this data have 
seriously restricted its availability. However, a 
more effective diagnosis of contributing factors 

to bus service variability requires that such data 
be as detailed as possible. 
	 With the development of advanced 
sensing and communication technology, 
transit operators are increasingly able to make 
real-time adjustments to service (e.g., using 
dynamic dispatching) to improve their services 
in the short term. A thorough understanding 
of the factors that are most significant to 
transit operation, particularly those that are 
controllable by transit providers, is necessary 
to facilitate decision-making on both short-term 
adjustment and long-term planning. However, 
only a limited amount of research is available 
under this context. Sterman and Schofer (1976) 
used the inverse of standard deviation of 
travel times to investigate factors affecting the 
reliability of urban bus services. Their results 
indicated that reliability was significantly 
degraded by increasing the route length, the 
intensity of intersection control, traffic volumes, 
and, with less certainty, bus passenger loadings. 
Guenthner and Sinha (1983) tested the statistical 
distributions of passenger boarding/alighting at 
the posted stops, based on which dwell time per 
person was modeled as a function of passenger 
boarding/alighting counts. Later, Guenthner 
and Hamat (1988) used data collected from 
Milwaukee, WI, to develop the distribution of 
adjusted bus arrival times. They also examined 
the characteristics of bus arrival times under 
the influence of different factors such as travel 
distance, location of peak load point, and 
headways. Rajbhandari et al. (2004) developed 
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a set of regression models to fit the relationships 
between bus dwell time and passenger 
boarding/alighting counts. The coefficients of 
determination were mostly around 0.7 for these 
models. While these studies offered interesting 
insights into the factors contributing to bus 
service variability, they were based on very 
limited data on passenger activities or they 
made certain assumptions on bus operation 
(e.g., fixed stop regime). 
	 With increasing deployment of automatic 
vehicle location (AVL) and automatic passenger 
counter (APC) technology, large amounts 
of transit operation and passenger activity 
data (e.g., numbers of passengers boarding 
and alighting at each stop, as well as their 
corresponding time and location) have become 
available. Using data provided by these devices, 
a better understanding of the relationship 
between bus operating characteristics and 
passenger activities can be obtained. Based 
on this information, bus operators can develop 
effective strategies to improve bus operational 
control and planning in a complex traffic 
environment. 
	 The objective of this study is to analyze the 
impact of passenger activities on bus dwell time 
and station-to-station travel time. The analyses 
used trip data recorded on a bus service route 
by onboard automatic passenger counters with 
AVL capabilities. The functional relationships 
between bus operating characteristics (such as 
dwell time and station-to-station travel time) 
and passenger activities were modeled by 
artificial neural network (ANN) models. This 
model enables transit operators to evaluate the 
relative significance of each passenger activity 
variable to the variation of dwell time and 
station-to-station travel time. Transit providers 
can use these methods to identify the causes of 
schedule deviation and potential measures that 
are most effective in improving transit service 
quality.

Data Description

The APC data were obtained from a reputable 
transit agency in the northeastern United States. 
The bus route under investigation operates 
through Essex, Union, and Middlesex counties 
in New Jersey, starting from Newark Penn 

Station and ending at Perth Amboy. The route 
is 29.5 miles between these two points and 
has 14 time points. The section starting from 
Newark Penn station and ending at Woodbridge 
Center Mall has 13 time points (TPs), and it 
was selected for this study because it has the 
largest amount of trip data among all the routes. 
In total, 167 bus trips were recorded between 
these two points during 2002. Scheduled travel 
time averaged 111 minutes, while actual travel 
time ranged from 90 minutes to 141 minutes. 
These trips were made during early morning, 
morning peak, late morning, mid-day, early 
afternoon, afternoon peak, and evening, as 
classified by the transit provider. 
	 The onboard AVL/APC devices recorded 
much information related to bus operational 
and passenger activities, including the time 
and location of a door open/close event and the 
number of passengers boarding and/or alighting 
at each stop. Based on this information, various 
operational parameters such as passenger load 
between two stops, dwell time at each stop, 
cumulative dwell time and number of stops 
made between two stations, as well as station-
to-station travel time, were estimated. Some of 
these estimates were subsequently used in the 
analyses. 

CHARACTERISTICS OF PASSENGER 
ACTIVITIES

Temporal and spatial characteristics of passenger 
demand are critical factors in the design of 
transit service. The most detailed information 
on passenger demand on a bus line is in the 
form of boarding and alighting counts at each 
stop. This data provides information on transit 
station usage and busloads at all points along 
a route. While passenger counts are essential 
to transit scheduling and long-term service 
planning, few analyses have been performed to 
quantify their impact on transit operation. 
	 As transit operators strive to improve 
service quality to attract more patrons, an in-
depth understanding of the factors that are 
significant to on-time performance is extremely 
important. For a bus service route, passenger 
demand varies with time of day and along the 
route. Certain segments (portions of the route 
between two adjacent time points) may carry 
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significantly higher loads than do others. One 
may also observe frequent passenger boarding 
and/or alighting activities on some segments. 
	 Based on AVL/APC data, one can analyze 
the temporal and spatial distributions of 
passenger activities using various statistical 
procedures. For example, multi-way analysis 
of variance (ANOVA) was used to demonstrate 
that temporal (i.e., time-of-day) and spatial 
(i.e., segment) factors were significant to 
passenger activity variables such as boarding/
alighting counts and the number of stops 
made on a segment. Furthermore, multiple 
comparison tests were used to examine if the 
average boarding counts (or other passenger 
activity variables) were statistically different 
between the subcategories within a factor (such 
as morning peak and early afternoon under 
the time-of-day factor). These analyses help 
transit operators pinpoint the period and/or 
segment that experiences the most variation 
in passenger activities. These techniques help 
determine potential problems in bus operation 
and thus facilitate efficient allocation of limited 
resources in future service improvement. 

DWELL TIME VARIATION ANALYSIS

Dwell time is an important parameter reflecting 
operating characteristics of transit service. 
It is traditionally defined as the time interval 
between the first and last passengers boarding 
the bus. The exact measurement of dwell time 
according to its original definition is very 
difficult in practice. Nevertheless, the time 
interval between door opening and subsequent 
door closing events derived from AVL/APC 
data can be considered as a valid approximation 
to dwell time. However, one should be cautious 
when making this assumption, because bus 
doors often remain open for extensive periods 
when the bus is at a terminal. This phenomenon 
was observed frequently in the data. Such a long 
interval does not reflect the level of passenger 
activities at terminals. 
	 Generally, bus dwell time depends on 
various factors such as bus design (e.g., types and 
widths of doors, width of the aisle, and height 
of the floor from the platform), lifting policy, 
passenger load, and characteristics. For a given 
service route, dwell time is usually affected 

by the number of passengers boarding and/or 
alighting the bus, as well as the operational 
characteristics of service. If boarding and 
alighting are designated to separate doors and 
are allowed at the same time, dwell time is 
likely to be shorter than those operations with 
only one door available.  
	 Currently, most bus transit services operate 
under a demand-stopping regime. That is, 
the bus driver will stop to pick up or drop off 
passengers along a route at the demand of a 
passenger onboard or along the route. While 
increasing the accessibility and attractiveness 
of transit service, this practice could cause 
dwell time, and subsequently station-to-station 
travel time, to be less predictable, especially 
when passenger demand evens out over the 
entire route segment. 
	 An analytical tool that compares the relative 
significance of each input variable is needed. 
Considering the complex and stochastic nature 
of the transportation system, we developed 
artificial neural networks to approximate the 
functional relationship between dwell time (as 
model output) and passenger activities with 
associated temporal and spatial attributes (as 
model input). After the networks were trained 
and validated, sensitivity analyses were then 
conducted to examine the relative strength of 
each of the input variables. 
	 In the following sections, the basic concept 
and procedure of neural network modeling, and 
particularly the concept of sensitivity analysis, 
will be introduced. They are followed by the 
application of such concepts in analyzing the 
relative significance of contributing factors to 
the variation of passenger dwell time. 

Artificial Neural Network

The artificial neural network is an advanced 
computing model that enables adaptive and 
nonlinear learning. It is built from many 
processing elements that are interconnected with 
each other. It has been used in many applications 
to approximate functional relationships that 
would otherwise be difficult to model using 
other methods such as regression analysis. 
Fundamental concepts of neural network 
models can be found in Principe et al. (2000) as 
well as numerous other works. 
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	 A major advantage of neural network 
modeling is that it does not require functional 
forms to be explicitly specified. Nor does it 
require that input variables be independent 
of each other. These features are extremely 
beneficial to a traffic system in which most 
variables (e.g., passenger demand over time 
and/or along a route) are stochastic, and some 
input variables may be correlated with each 
other (such as passenger boarding and alighting 
counts and the number of stops made along the 
way). However, a neural network needs to be 
trained and validated using an extensive amount 
of data. With the advancement of technology, a 
large amount of data that records the operational 
characteristics of a transportation system 
is becoming increasingly available. Transit 
AVL/APC data is one example and the data 
requirement of neural network modeling is less 
likely to be a problem. For a comprehensive 
review of neural network applications in 
transportation system analysis, refer to Faghri 
and Hua (1992) for details. As far as transit 
system modeling applications, Ding and Chien 
(2000) developed neural network models to 
predict bus arrival time based on simulation 
data. Chen et al. (2003) and Chen et al. (2004) 
developed neural network models and combined 
them with Kalman filter algorithm to predict 
bus travel time using AVL/APC data. However, 
detailed information on passenger activity 

was not included in these models. Figure 1 
shows a general architecture form for a neural 
network with one-dimensional output. The 
input variables located on the input layer are 
connected with the processing elements (PEs) 
on the hidden layer which are then connected to 
the processing element on the output layer. 
	 Neural networks were developed to 
model the relationship between dwell time and 
passenger activities, as well as their associated 
temporal and spatial factors. Network input 
variables that describe passenger activities are 
passenger boarding count, alighting count, and 
the number of stops made on a segment. Also 
included in the model as input are symbolic 
variables, which are time-of-day and route 
segment. One additional channel is added 
to input for each unique symbol found in the 
data field. Each expanded channel of a given 
symbolic variable represents one symbol, with 
a “1” indicating the symbol is present and a 
“0” indicating the symbol is absent. As a result, 
each data sample will have only one channel set 
to “1” and the remaining channels set to “0” for 
a given symbolic input. The AVL/APC devices 
showed that data were collected on twelve 
segments during seven periods. Therefore, 
the time-of-day variable is expanded to seven 
channels and the segment variable expanded to 
12 channels. 
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Figure 1: General Architecture of a Single Output Neural Network
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Performance Comparison.  Various network 
topologies such as multi-layer perceptron and 
radial basis functions were tested with different 
transfer functions (e.g., tangent, sigmoid, etc.). 
Multiple test runs were conducted for each 
combination of network topology and transfer 
function, and the best-performing networks 
were saved. A commonly used performance 
measure is the mean squared error (MSE), 
which is defined as

(1)
			                ,

Where P denotes the number of output 
processing elements, N denotes the number 
of exemplars in the data set,  yij denotes the 
network output for exemplar i at the processing 
element j, and dij denotes the desired output for 
exemplar i at the processing element j. MSE is 
a measure of how well the network output fits 
the desired output. 
	 However, MSE is closely related to the 
data for scale of output. Performance is not 
directly comparable between two models with 
different output data. To offset such impact, 
one can estimate the normalized mean squared 
error (NMSE) instead to obtain a standardized 
measure of performance. The NMSE is defined 
as MSE divided by the variance of the desired 
output, as follows, 

where d represents the vector of desired output.
	 Another performance measure is the 
correlation coefficient (r), which examines the 
correlation between the network output and the 
desired output. It is defined as

				                  ,
(3)

Where, yi and di denote the network output and 
desired output for exemplar i, respectively; y  
and d  denote their average respectively, and  
N denotes the number of exemplars in the data 
set. The closer the r value is to 1.0, the better 
the correlation is between the network output 
and desired output. 

	 Preliminary analysis showed that the 
multiplayer perceptron (MLP) networks 
consistently outperformed the radial basis 
(RBF) networks when applied to this set of data. 
Therefore, only MLP networks were constructed 
in the formal analysis. Various combinations 
of input variables were tested with a different 
number of PEs and transfer functions. Table 1 
shows several sample neural networks with the 
best-performance in modeling the dwell time as 
a function of passenger demand variables and 
time and spatial factors. With an MSE value of 
282.4 (which corresponds to an average error 
of less than 17 seconds between estimated and 
measured dwell times), and an NMSE value of 
0.18, the best-performing network produced a 
set of estimated dwell time that had a coefficient 
of correlation of  r = 0.91 with the measured 
dwell time. 

Sensitivity Analysis. After a model is trained 
and validated, sensitivity analysis can be 
performed to evaluate the significance of each 
input. The sensitivity of an output with respect 
to an input can be obtained through fixing the 
weights of a trained network and perturbing the 
input channel in a small amount while keeping 
other input constant. The corresponding change 
in the output is then measured. Two types of 
sensitivity measures were used in this study: 
raw sensitivity and relative sensitivity. Let I 
denote the number of input variables,  J denote 
the number of output variables, xi denote the 
value of the i – th input, and yi denote the value 
of the j – th output. When other input variables 
are unchanged, the perturbation of the i – th 
input of ix∆  will cause the value of the j – th 
output to change by jy∆ . The raw sensitivity 
of the  i – th input with respect to the j – th 
output can be expressed as         . 

	 In addition to the raw marginal impact of an 
input, one may need to find the relative strength 
of each input variable. Relative sensitivity is 
defined as the percentage effect that a particular 
input has on an output. It can be expressed as I×J  
matrix, in which column j (j ∈[1,...,J]) contains 
the percentage effect of all input variables on 
the j – th output. The sum of all entries for 

MSE
d y

NP

ij ij
i

N

j

P

=
−

==
∑∑ ( )2

11

r
y y d d N

d d N y y N

i i
i

i
i

i
i

=
− −

− −

∑
∑ ∑

( )( )

( ) ( )2 2

∆
∆

y
x

j

i

NMSE MSE=
var( )d

(2)



Neural Network

136

any column should be 100%. The percentage 
effect of each input variable on a particular 
output was estimated through normalizing the 
raw sensitivities associated with this output. 
It should be noted that the raw sensitivities of 
all channels associated with a symbolic input 
variable (e.g., time-of-day and segment) should 
be averaged before renormalization. 
	 Sensitivity measures describe the effect of 
a given input on an output. Larger sensitivities 
imply higher significance in mapping. For transit 
operators, identifying factor(s) that are most 
significant to the operation will provide decision 
support for potential service improvement. 
From the neural network modeling perspective, 
sensitivity analysis can be used to identify the 

least important input(s) to the network output. 
The analyst may then consider excluding these 
inputs from the model if the performance of the 
network does not deteriorate considerably after 
the exclusion. This could be a very useful tool 
in reducing the size of the neural network to 
save on data collection and computation cost. 
In this study, this concept was implemented in 
the preliminary evaluation of neural network 
models. 
	 For the best-performing neural network, 
model 1 in Table 1, the relative sensitivity for 
each of the input variables was estimated and 
shown in Figure 2. The boarding count on a 
segment was the most significant input of the 
model. It accounted for more than 45% of 

Table 1: Performance Measures of Neural Network Models

Model No. Topology
Number of PEs 
in the Hidden 

Layer

Transfer 
Function MSE NMSE r

1 MLP 7 tanh 282.4 0.18 0.91

2 MLP 5 tanh 283.3 0.23 0.89

3 MLP 7 sigmoid 284.1 0.24 0.87
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Figure 2: Relative Sensitivity of Total Dwell Time with Respect to Input Variables
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the changes in dwell time caused by giving a 
small perturbation for all inputs. Meanwhile, 
the alighting count by segment was not as 
significant – it only accounted for about 18% 
change. This observation is consistent with 
bus operating characteristics. It usually takes 
a longer time for passengers to board because 
each of them needs to pay the fare once on the 
bus. 
	 The number of stops made on a segment 
was the second most significant factor to 
the change of total dwell time – at a relative 
sensitivity of 26%. This variable reflects both 
the distribution of passenger demand along 
the route and the transit-stopping regime. The 
bus service route from which the trip data 
was collected was operating under a demand-
stopping regime, i.e., the buses stopped at any 
location (as deemed safe by the operators) that 
the passengers on board or along the route 
demanded. Under this operating policy, the 
spatial distribution of passenger demand along 
the route determines the number of stops to be 
made on each segment. 
	 Compared to passenger activity measures, 
temporal and spatial factors were the least 
significant input variables (with the lowest 
relative sensitivity values). Therefore, they may 
be excluded from the input variable set to reduce 
the size of the network. Subsequent training and 
validation runs confirmed that the performance 
of the updated network was not affected 
significantly. The MSE increased slightly to 
284 while the coefficient of correlation dropped 
slightly to 0.85. 

TRAVEL TIME VARIATION ANALYSIS

A very important piece of information needed 
for transit operational analysis is station-to-
station travel time, which is crucial to obtaining 
operating speed and reliability of service for 
planning potential service improvement. In this 
study, neural networks were also developed 
to model the relationship between station-to-
station travel time and passenger activities. 
Input variables included boarding count, 
alighting count, number of stops made on a 
segment, and total dwell time on a segment, as 
well as temporal and spatial factors. 

	 The network was trained and validated for 
multiple times (10 times in this study) using 
various combinations of transfer functions and 
a number of PEs in the hidden layer. Sensitivity 
analysis was performed on the network for 
each combination. Those input variables with 
the least significance were excluded from the 
input, and the network was re-trained and re-
validated. This process continued until the 
performance of the neural network (measured 
by MSE and correlation coefficient) started to 
deteriorate significantly. 
	 After extensive test runs, it was found 
that the models with total boarding count, 
total alighting count, number of stops made, 
and total dwell time, as well as temporal and 
spatial factors had the best overall performance 
and computational efficiency. The MSEs and 
NMSEs were consistently lower than in models 
with other combinations of input variables. 
Table 2 shows the performance of selected 
models with relatively good performance. For 
all scenarios tested, the MLP network with 
a single hidden layer outperformed the MLP 
network with multiple hidden layers and all of 
the RBF networks that were tested. Therefore, 
only MLP networks with a single hidden layer 
are shown in the table. 
	 The best performing model (no. 8 in Table 
2) is the single hidden layer (with 5 PEs) MLP 
network with a tangent transfer function. With 
an MSE value of 1304, which corresponds to 
an average error of 36 seconds on station-to-
station travel time estimation, and an NMSE of 
0.07, the network output showed a very strong 
linear correlation with the measured station-to-
station travel time. 
	 As described earlier, the sensitivity of 
an output (i.e., station-to-station travel time) 
with respect to an input can be estimated by 
calculating the change in output caused by a 
small perturbation of each input variable while 
keeping other inputs fixed at their current 
values. Figure 3 shows relative sensitivities 
with respect to each of the input variables for 
the best performing model (no.8). The segment 
variable incorporates several critical factors 
such as segment length, geometric condition, 
and traffic control settings that affect bus-
running time substantially. It was the most 
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Table 2: Performance Comparison Between Various Neural Network Models

Model No. Topology
Number of PEs 
in the Hidden 

Layer

Transfer 
Function MSE NMSE r

4 MLP 10 tanh 1354 0.14 0.92

5 MLP 7 tanh 1357 0.15 0.92

6 MLP 7 tanh 1312 0.13 0.93

7 MLP 5 tanh 1312 0.13 0.93

8 MLP 5 tanh 1304 0.07 0.96
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Figure 3: Relative Sensitivity of Station-to-Station Travel Time with Respect to 
Input Variables
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significant input to the variation of travel time 
for this bus route. Dwell time was the second 
most important input. It reflected station-
standing time to allow passenger boarding 
and alighting. The number of stops made 
on a segment was the next significant input, 
representing the distribution of passenger 
demand along the route. While they had similar 
relative sensitivities values, these three factors 
apparently contributed significantly more than 
any other input variables, with a total combined 
relative sensitivity of more than 66%. On 
the other hand, station-to-station travel time 
was less sensitive with respect to changes in 
boarding and alighting counts. 
	 The temporal (i.e., time-of-day) factor 
did not have a significant impact on travel 
time variation. However, its exclusion from 
the input caused significant deterioration 
of network performance. Specifically, the 
correlation coefficient, r , dropped to 0.82 after 
it was removed from the input, and the MSE 
increased to 2016. Therefore, the exclusion 
of the temporal factor from the input was not 
recommended under this circumstance.

 
CONCLUSIONS AND PRACTICAL 
IMPLICATIONS

This paper analyzed the impact of passenger 
activities on bus dwell time and station-to-
station travel time. Artificial neural network 
models were developed to approximate 
functional relationships between input and 
output variables. This modeling approach was 
chosen because it does not require an explicit 
functional form or independence among input 
variables. This is a significant advantage over 
other methods such as regression, especially 
where many variables may be correlated 
with each other (such as boarding count and 
number of stops made). Neural network 
models demonstrated good performance with 
reasonable values of MSE and high correlation 
coefficients between the network output and 
actual measurements. 

	 Among all of the variables describing 
passenger activities, boarding count was the 
most significant contributor to the variation 
of dwell time. While this was no surprise to 
practitioners, the observation confirmed the 
significance of the model. The next significant 
input was the number of stops made on a 
segment, which was also quite significant to 
station-to-station travel time. This observation 
can provide some insight into transit operation. 
Because station-to-station travel time is highly 
sensitive to total dwell time and the number of 
stops made on a segment as shown in Figure 3, 
transit operators may want to look for ways to 
control the number of stops made on a segment. 
This is especially important when passenger 
demand reaches a higher level that calls for more 
frequent stopping under a demand-stopping 
regime. Here, transit providers should consider 
switching to on-call stopping or even fixed stops 
to concentrate on passenger boarding/alighting 
at a smaller number of locations along the route. 
This will not only shorten dwell time, but will 
also significantly help reduce station-to-station 
travel time (or increase operating speed). 
	 The relative sensitivity of each input factor 
produced by the neural network models can serve 
as an indicator of the importance of each input. 
Sensitivity analysis can help decision-makers 
identify factors that warrant the most attention 
and resources in future service improvement 
efforts. For example, with additional data 
on geometric condition and traffic-control 
devices along the service route, the transit 
provider can use the same technique to further 
identify significant contributors to variation in 
service reliability and thus develop appropriate 
strategies for service improvement. For instance, 
if the sensitivity analysis indicates that traffic 
signal density is a significant contributor to 
travel time variation, a signal priority for buses 
might be considered if possible. Clearly, these 
observations and conclusions are site-specific. 
Nevertheless, the analytical procedures used 
in this study can be applied to any transit route 
with AVL/APC data. 
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